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Abstract. A compensated algorithm is presented to evaluate finite Laguerre series. We 
record round-off error in Clenshaw algorithm by using error-free transformations (EFTs). 
In this work, we establish a valid error estimate that is as accurate as the Clenshaw scheme 
using twice the working precision. Numerical experiments illustrate that our compensated 
algorithm is more accurate than the Clenshaw algorithm and faster than the DDClenshaw 
algorithm (Clenshaw in double-double arithmetic). 

1. Introduction  

The Generalized Laguerre polynomial is widely used in numerical analysis [1, 2, 3] and 
Quantum [4]. It is defined with three-term recurrence relation as follow. 
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The Laguerre polynomials are orthogonal polynomials with respect to an inner product 
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where coefficients ja  are floating-point numbers. 
Clenshaw Algorithm [5] is a recursive method to calculate a linear combination of Chebyshev 

polynomials. It can be generalized to any class of function which can be defined by a three-term 
recurrence relation. The relative error bound proved in literatures [6, 7] is 
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where ˆ ( )p x  is the result of Clenshaw algorithm in floating-point arithmetic. When the problem is 
ill-conditioned, numerous compensated algorithms [8, 9, 10] based on error-free transformations 
[11] are proposed to evaluate different polynomials. 

We propose a compensated algorithm to evaluate Laguerre series based on error-free 
transformation. The algorithm can obtain a more accurate result by compensating the round-off 
errors to the original result. We demonstrate that the forward relative error bound satisfies 

 2ˆ| ( ) ( ) | ( ) ( , ) ( ).
( )

p x p x o u cond p x o u
p x
−

≤ + ×   (2) 

This paper is organized as follows. We introduce basic preliminaries and notations in Section 2, 
including error-free transformations and Clenshaw algorithm. In Section 3, we present the 
compensated Clenshaw algorithm and analyze the forward error of Clenshaw and Compensated 
Clenshaw algorithm. In Section 4, we show the experimental results to indicate our algorithm is 
efficient and accurate. 

2. Preliminaries and Notations 

2.1. Basic Definitions and Notation  

Throughout the paper we assume a floating-point arithmetic adhering to IEEE 754 floating-point 
standard [12] and no overflow nor underflow occurs. We also assume that ( )fl ⋅  is the result of a 
floating-point computation. Here, the computations are produced in a floating-point arithmetic 
which obeys the models. 

 
(  op )(  op ) = (  op )(1 ) = , | |,| | ,

1
x yfl x y x y uρ ρ α

α
+ ≤

+
  (3) 

where op { , , , /}∈ + − ×  and u  is the working precision. Besides, we note 
2:= / (1 ) = ( )n nu nu nu uγ − +  and we use â  to represent the computed element of a in floating-

point arithmetic. Finally, an elementary classical result of error analysis states that if  then 
 with .  

2.2. Error-free Transformations 

In this subsection we review well-known results called error-free transformations (EFTs) . Given 
, , then exist  such that . 

We show algorithms 1-3 about addition and product of two floating-point numbers proposed 
respectively by Knuth [13] and Dekker [14], respectively. 
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A compensated algorithm [15] for product of three floating-point numbers in Algorithm 4 is also 

presented. There are three properties of  ThreeProd which will be used in error analysis: 
1. 2| | | | | | | | | |;e u abc u hc u abc u abc≤ + ≤ +  
2. 2| | | | | | 2 | | | |;ch e ch e u abc u abc+ ≤ + ≤ +  

3. If =x y abc τ+ −  in  ThreeProd algorithm, then 
 2

2 6| | | |, | | 2 | | 14 | | .abc y u abc u abcτ γ γ≤ ≤ +   (4) 

2.3. Clenshaw Algorithm and Condition Number 

The Clenshaw algorithm [5] of generalized Laguerre polynomial shows in Algorithm 5.  

 
Reviewing [16], their works put forward a general condition number for polynomial basis 

defined by linear recurrence. Before giving the condition number of Laguerre polynomial, we show 

an absolute polynomial.   

Definition 1. Let ( )kL x  be a Laguerre polynomial. The absolute polynomial ( ) ( )kL xα
  can be 

defined as follow. 
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where   and  , for all 0x ≥ . 
Motivated by [10, 11, 15], we show the condition number of Laguerre polynomial series.   
Definition 2. Let  , the relative condition number is  
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where   is Laguerre polynomial,   is absolute polynomial. 
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3. Compensated Algorithm and Error Analysis 

3.1. Clenshaw Algorithm and Condition Number 

In this section, we analyze the round-off error of Clenshaw algorithm and present a compensated 
Clenshaw algorithm to compute finite Laguerre series accurately. Furthermore, we exhibit its error 
bound. 

Previously, we divide all real coefficients into three parts as following form in order to analyze 
errors. 

 ( ) ( ) ( )= ,h l mA A A A+ +   (7) 
Where ( ) ( ) ( ) ( ) ( ) ( ) ( ), , , ,h l m m l l hA A A A uA A uA∈ ∈ ≤ ≤  . 

Actually, in floating-point arithmetic, round-off error is almost produced in each addition, 
subtraction or multiplication in Clenshaw algorithm. We choose the recurrence relation at th step of 
Clenshaw Algorithm for analysis, we have 
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As for theoretical computation related with (8), we deduce that 
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In Algorithm 4 we use EFTs and ThreeProd to eliminate every error and obtain that 
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Contrast with (9), the round-off error of method (8) is 
 ( ) ( ) ( ) ( ) ( ) ( )

1 1 1 1 2
ˆ ˆ ˆ= ( ) ( ) ( ) .l m l m l m

j j j j j j j j j j j j j j j j je A A xb B B b C C b τ α b x h θ ζ+ + + + ++ + + + + + + + + + + +   (11) 

 
Then we can obtain Theorem 1 as follow.  
Theorem 1. Let ,  be the computed result by Clenshaw 

algorithm in floating-point arithmetic, given , we can 
get the error bound as 
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As we can see, in Theorem 1, the computed result 0̂b  is an exact value with perturbation 1 ( )
=0

( )n
j jj

e L xα−∑ . 
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=0

= ( )n
j jj

c e L xα−∑  and ( )
0 =0
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b a L xα∑ , we obtain 

 0 0
ˆ = .b c b+   

Therefore, we record the round-off error in each step of Clenshaw algorithm by EFTs, and then 
compute the perturbation to correct the numerical result 0b̂ . In fact, because c  is also a Laguerre 
series, we can apply Clenshaw algorithm again. We present compensated Clenshaw algorithm 
( CompClenshaw) in Algorithm 6. 

In order to analyze the error bound of the  CompClenshaw algorithm, we show Lemma 1 as 
follow.   

Lemma 1.  Let  be a Laguerre series of degree n, x is a floating-point number, 

 the numerical result of Clenshaw algorithm. Then 

 ( )
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Lemma 2. Suppose  be a Laguerre series of degree n and x is a floating-
point number, we assume that ,where  a real 
numbers. Then 
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  Based on Lemma 2, we can obtain Lemma 3 as follow.   

Lemma 3. Suppose , 

 and  is the error of  ThreeProd, 

then we can obtain 
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As analyzing in Lemma 3, we discover some perturbation do not influence the numerical result 

in working precision. Such as (16),(18), the bound  are , so these errors do not 

affect the precision. However, from (15),(17) we know that  are , so the coefficient 

perturbations may influence the accuracy, we need to consider it in our error analysis.    

Theorem 2. Let  be a Laguerre series of degree  and x is a floating-

point number. Then the forward error bound of the CompClenshaw algorithm is 
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Proof.  From [9, 15], we show two inequations to get the error bound. 
Suppose 
 = ,j j j j j j js α b x h θ ζ+ + + + +   
then we have 
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 Then we obtain the error bound 
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Combining Definition 2 and Theorem 2, we present corollary 3.1 as follow.  Given 
  a Laguerre series of degree  with floating-point coefficients, and x  is a floating-

point number. Then the error bound of CompClenshaw algorithm is 

 2
6

| ( , ) ( ) | 2 ( , ).
| ( ) | n

CompClenshaw p x p x u cond p x
p x

γ−
≤ +   (20) 

As the Corollary 3.1 show, the relative error bound produced by  CompClenshaw algorithm is 
2
6nγ  times the condition number of the polynomial and plus an unavoidable summand u . That is to 

say, if 2
6( , ) 0.5 ( )ncond p x O uγ −≤ × , the computed result of CompClenshaw algorithm is accurate. 

When 2
6( , ) 0.5 ( )ncond p x O uγ −≥ × , its accuracy will be the same as computed in original Clenshaw 

algorithm with normal condition numbers. 

4. Experimental Results 

4.1. Evaluation of the Polynomial in Laguerre basis 

All our experiments are performed using IEEE-754 double precision. The polynomials in 
Laguerre basis we consider are floating-point coefficients, and x  is a floating point. We use the 
Symbolic Toolbox in Matlab to obtain exact results for comparisons. 
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In our experiment, we consider polynomial 7 10( ) = ( 0.52) ( 1)p x x x− − , an ill-conditional 
polynomial in neighborhood of its multiple roots 0.52 and 1. The  Clenshaw and  CompClenshaw 
Algorithm are used to evaluate the Laguerre polynomial basis with parameter = 0α . For 
perturbations of Laguerre polynomial, we need to convert the polynomial coefficients to Laguerre 
basis [17]. We use a Convert algorithm [15] to obtain the coefficients of Laguerre polynomial. 

Firstly, we check the polynomial with argument = 0α  for 400 isometric points in [0.68,1.15], 
[0.7485,0.7515],and [0.993,1.007] . We show the absolute error (13) and (19) in Figure 1. From 
Figure 1, we detect that the  CompClenshaw algorithm is more accurate than  Clenshaw. 

 

 
As we known, the closer to the root, the larger the condition number [10]. We test 120 points of 
polynomial 7 10( ) = ( 0.52) ( 1)p x x x− −  near the root = 0.52x , i.e. 2 85= 0.52 1.03 ix −−  where = 1: 80i  and 

5 85= 1 1.03 ix −−  where = 1: 40i . We compare the forward relative error | ( ) ( ) | / ( )
res sym sym

p x p x p x−  of  
Clenshaw, CompClenshaw and  DDClenshaw algorithm in Figure 2, respectively. As we can see, in 
Figure 2, the relative error of  CompClenshaw and  DDClenshaw algorithm are almost same. 
Moreover, when condition number is less than working precision 16 ( = 1.16 10 )u u −× , the result of  
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CompClenshaw is nearly equal to u . When condition number is larger than u , the forward error 
increase linearly. 
Meanwhile, we also consider the computational complexity of  Clenshaw, CompClenshaw, and  
DDClenshaw algorithms, based on the computation cost of  TwoSum,  TwoProd, and  FastTwoSum. 
The complexity of them is 7 2 flops, 105 9 flops, 154 44 flopsn n n− − − . So we can observe that  
CompClenshaw is as accurate as  DDClenshaw in double precision, but it only needs about 68.18%  
of flops. 

5. Conclusion 

This paper introduce a  CompClenshaw algorithm to evaluate the Laguerre polynomial. The 
Clenshaw algorithm is not accurate enough when the problem is ill-conditioned, particularly the 
floating-point is near the multiple root of polynomial. The  CompClenshaw algorithm can delay the 
appearance of instability problems in standard precision and obtain a full precision result, which as 
same as computed in double-double precision. Besides, the  CompClenshaw algorithm is more 
efficient to evaluate Laguerre polynomial. 
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Appendix 

Appendix A: The Extra Proof 

Proof of Theorem 1. Inspired by [15], we set 
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and 0 0 1 1 2 0
ˆ ˆ ˆ ˆ=b e xb b b aα α+ − + + + . 

Thus 
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j j j
j
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with = = = = = = 0n n n n n nα b x h θ ζ , then we can obtain the result. 
Proof of Lemma 1.  Based on equation (3), we obtain 

 

( ) ( ) ( )
1 1 1

1 1 1

( ) ( ) ( ) ( )
2 2 2 1 1 2

2 1 2 1 1 2

ˆ ˆ ˆ ˆ=
ˆ ˆ= < 5 > < 4 > < 1 >

ˆ ˆ ˆ= [ ]
ˆ ˆ ˆ= < 6 > < 5 > < 4 > < 1 >

h h h
n n n n n j

n n n n n

h h h h
n n n n n n n

n n n n n n n

b A x b B b a

A xb B b a

b A x B b C b a

A xb B b C b a

− − −

− − −

− − − − − −

− − − − − −

⊗ ⊗ ⊕ ⊗ ⊕

+ +

⊗ ⊕ ⊗ ⊕ ⊗ ⊕

+ + +


  (23) 

Using mathmematical induction, we can obtain 0̂b  as follow 

 

1

0 0
=0

1

0
=0

ˆ =< 10 6( 2) > ( ) < 1 >

=< 6 2 > ( ) < 1 > .

n
n

j n
j

n
n

j n
j

b n A x a a

n A x a a

−

−

+ − + +

− + +

∏

∏





  (24) 

Combing (24) the forward error is 
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1

0 6 2 0 1
=0

1

6 2 0
=0

( )
6 2

=0

ˆ| ( ) |=| ( ) |

| ( ) || || | | |

= | | (| |).

n
n

n j n
j

n
n

n j n
j

n

n j j
j

b p x A x a a

A x a a

a L xα

θ θ

γ

γ

−

−

−

−

−

− + +

≤ + +

∏

∏

∑







  (25) 

Proof of Lemma 2. According to (23), we have 
 6 1 1 1 2

ˆ ˆ ˆ ˆ| | (1 )(| || || | | || | | || | | |).j j j j j j j jb A x b B b C b aγ + + + +≤ + + + +   (26) 

Combining (26) with 1 1 1 2
ˆ ˆ ˆ( | || | | || | | || | | |)j j j j j j j j jA x b B b C b aσ ω + + + +≤ + + + , we get 

 ( )
6( 1)

=
(1 ) | | (| |),

n

j j n j k k j
k j

a L xασ ω γ − − −≤ + ∑    (27) 

then 

 
1 1

( ) ( ) ( )
6( 1)

=0 =0 =
(| |) (1 ) | | (| |) (| |).

n n n

j j j n k k j j
j j k j

L x a L x L xα α ασ ω γ
− −

− −

 
≤ + ×  

 
∑ ∑ ∑     (28) 

Then we can obtain 

 
1 1 1

( ) ( ) ( )
6( 1) 6( 1)

=0 =0 = =0
(| |) (1 ) | | (| |) (1 | | (| |)).

n n n n

j j j n k k j n j j
j j k j j

L x a L x n a L xα α ασ ω γ ω γ
− − −

− −≤ + ≤ +∑ ∑∑ ∑     (29) 

Proof of Lemma 3. According to 
( ) ( )l hA uA≤  and ( ) = < 1 >hA A ,we obtain 

( )
1 1 1 1 2

ˆ ˆ ˆ| | (1 )(| || || | | || | | || |).l
j j j j j j jg u A x b B b C bγ + + + +≤ + + +  

Then combing Lemma 2 

 

( ) ( ) ( )
6 1

=0 =0

( )
6 1

=0

( )
6 1

=0

| ( ) | ( 1) (1 ) | | (| |)

(6 1) (1 ) | | (| |)

| | (| |).

n n
l

j j n j j
j j

n

n j j
j

n

n j j
j

g L x n u a L x

n u a L x

a L x

α α

α

α

γ

γ

γ

+

+

+

≤ + +

≤ + +

≤

∑ ∑

∑

∑







  

Similarly, we have 
( ) 2

1 1 1 1 2
ˆ ˆ ˆ| | (1 )(| || || | || || | | || |).m

j j j j j j jg u A x b B x b C bγ + + + +≤ + + +  
Then 

( ) ( ) ( )
6 1

=0 =0
| ( ) | | | (| |)

n n
m

j j n j j
j j

g L x u a L xα αγ +≤∑ ∑   

Based on equation (4), we obtain  
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2
1 1

( )
1 1 1

( )
1 2 1 1 2

1 1

1 1 1 2

ˆ| | (2 14 )(1 ) | |,
ˆ ˆ| | | | (1 ) | |,
ˆ ˆ| | | | (1 ) | |,

ˆ ˆ| | | | | < 3 > < 2 >|,
ˆ ˆ ˆ| | | < 4 > < 3 > < 2 >|,

| | |

j j j

h
j j j j j

h
j j j j j

j j j j j j j

j j j j j j j

j j

u u A xb

u B b u B b

u C b u C b

u s t u A xb B b

u A xb B b C b

u A

α γ

b γ

x γ

h

θ

ζ

+

+ +

+ + + +

+ +

+ + + +

≤ + +

≤ ≤ +

≤ ≤ +

≤ + ≤ +

≤ + +

≤ 1 1 1 2
ˆ ˆ ˆ< 5 > < 4 > < 3 > < 1 >|,j j j j j jxb B b C b a+ + + ++ + +

  

Then  
 2

5 1 1 1 2
ˆ ˆ ˆ(5 14 ) |1 | (| || | | | | | |).j j j j j j j js u u A x b B b C b aγ + + + +≤ + + × + + +   (30) 

Let 2
5= (5 14 ) |1 |j u uω γ+ + , from Lemma 2 we have 

 

( )
1

( )

=0

( )
6 1

=0

( )
6 1

=0

| | | | | | | | | | | | | ( ) |

(5 14 ) (1 ) | || (| |)

| || (| |), ( > 1).

n

j j j j j j j
j

n

n j j
j

n

n j j
j

L x

u nu a L x

a L x n

α

α

α

α b x h θ ζ

γ

γ

−

−

−

+ + + + +

≤ + +

≤

∑

∑

∑





  

Similarly, combing with ( )
2 6 1 2 6 1 1

ˆ ˆ| | | | (1 ) | |h
j j j j jA xb A xbτ γ γ γ γ γ+ +≤ ≤ + , we have 

 

1
( ) ( )

2 6 1 6( 1)
=0 =0

( )
6 6 4

=0

| | || ( ) | (1 )(1 ) | || (| |)

| || (| |).

n n

j j n j j
j j

n

n j j
j

L x n a L x

a L x

α α

α

τ γ γ γ γ

γ γ

−

−

−

≤ + +

≤

∑ ∑

∑    

Appendix B: The double-double Algorithm [19] 

Algorithm 7 Addition of double-double number and a double number 
 [ , ] = _ _ ( , , )rh rl add dd d ah al b  
[ , ] = ( , )th tl TwoSum ah b  

=tl al tl⊕  
[ , ] = ( , )rh rl FastTwoSum th tl  
Algorithm 8 Multiplication of a double-double number by a double number 
[ , ] = _ _ ( , , )rh rl prod dd d ah al b  
 [ , ] = ( , )th tl TwoProd ah b  

=tl al b tl⊗ ⊕  
[ , ] = ( , )rh rl FastTwoSum th tl   
Algorithm 9 Multiplication of a double-double number by a double-double number 
[ , ] = _ _ ( , , , )rh rl prod dd dd ah al bh bl  
[ , ] = ( , )th tl TwoProd ah bh  

= ( ) ( )tl ah bl al bh tl⊗ ⊕ ⊗ ⊕  
[ , ] = ( , )rh rl FastTwoSum th tl  
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Algorithm 10 Addition of a double-double number and a double-double number 
[ , ] = _ _ ( , , , )rh rl add dd dd ah al bh bl  
[ , ] = ( , )sh sl TwoSum ah bh  
[ , ] = ( , )th tl TwoSum al bl  

=sl sl th⊕  
=th sh sl⊕  
= ( )sl sl th sh   
=tl tl sl⊕  

[ , ] = ( , )rh rl FastTwoSum th tl  
Algorithm 11 DDCleshaw algorithm of evaluating Laguerre series in double-double arthmetic 
 function = ( , )res DDClenshaw p x  

 2 1= = 0n nb b+ +  

  for = : 1: 0j n −  

 ( ) ( )
1 1[ 1, 1] = _ _ ( , , )h h

j jrh rl prod dd d b b x+ +  

 ( ) ( )[ 2, 2] = _ _ ( 1, 1, , ))h l
j jrh rl prod dd dd rh rl A A  

 ( ) ( ) ( ) ( )
1 1[ 3, 3] = _ _ ( , , , )h l h l

j j j jrh rl prod dd dd b b B B+ +  

 ( ) ( ) ( ) ( )
2 2 1 1[ 4, 4] = _ _ ( , , , )h l h l

j j j jrh rl prod dd dd b b C C+ + + +  

 [ 5, 5] = _ _ ( 2, 2, 3, 3)rh rl add dd dd rh rl rh rl  
 [ 6, 6] = _ _ ( 5, 5, 4, 4)rh rl add dd dd rh rl rh rl− −  

 ( ) ( )[ , ] = _ _ ( 6, 6, )h l
j j jb b add dd d rh rl a  

end for 
 ( ) ( )

0 0= [ , ]h lres b b   
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