
Accurate Evaluation of Finite Laguerre Series
Keshan He1,a,*, Peibing Du1,a , Hao Jiang1,a, Xueci Zhao1,a, Housen Li3,b and Lizhi Cheng2,a

1 School of Science, National University of Defense Technology, Changsha, China
2 College of Computer, National University of Defense Technology, Changsha, China

3 Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Geottingen, Germany
a {hekeshan11, dupeibing10, zhaoxueci11, Hao Jiang, Lizhi Cheng}@nudt.edu.cn,

 b housen.li@mplibpc.mpg.del,
*corresponding author

Keywords: Compensated Algorithm, Laguerre Series, Clenshaw, Floating-Point
Arithmetic, Round-off Error

Abstract. A compensated algorithm is presented to evaluate finite Laguerre series. We
record round-off error in Clenshaw algorithm by using error-free transformations (EFTs).
In this work, we establish a valid error estimate that is as accurate as the Clenshaw scheme
using twice the working precision. Numerical experiments illustrate that our compensated
algorithm is more accurate than the Clenshaw algorithm and faster than the DDClenshaw
algorithm (Clenshaw in double-double arithmetic).

1. Introduction

The Generalized Laguerre polynomial is widely used in numerical analysis [1, 2, 3] and
Quantum [4]. It is defined with three-term recurrence relation as follow.

()
0
()
1

() () ()
1 1

() = 1,
() = 1 ,

2 1() = () ().
1 1k k k

L x
L x x

x k kL x L x L x
k k

α

α

α α α

α
α α

+ −

+ −
 − + + + + −

+ +

The Laguerre polynomials are orthogonal polynomials with respect to an inner product

0
< , >= () () xf g f x g x e dx

+∞ −∫ . The polynomial represented in Laguerre basis is ()

=0
() = ()n

j jj
p x a L xα∑

where coefficients ja are floating-point numbers.
Clenshaw Algorithm [5] is a recursive method to calculate a linear combination of Chebyshev

polynomials. It can be generalized to any class of function which can be defined by a three-term
recurrence relation. The relative error bound proved in literatures [6, 7] is

ˆ| () () | (,) (),

| () |
p x p x cond p x o u

p x
−

≤ × (1)

195

The 5th International Conference on Advanced Computer Science Applications and Technologies (ACSAT 2017)

Published by CSP © 2017 the Authors

where ˆ ()p x is the result of Clenshaw algorithm in floating-point arithmetic. When the problem is
ill-conditioned, numerous compensated algorithms [8, 9, 10] based on error-free transformations
[11] are proposed to evaluate different polynomials.

We propose a compensated algorithm to evaluate Laguerre series based on error-free
transformation. The algorithm can obtain a more accurate result by compensating the round-off
errors to the original result. We demonstrate that the forward relative error bound satisfies

 2ˆ| () () | () (,) ().
()

p x p x o u cond p x o u
p x
−

≤ + × (2)

This paper is organized as follows. We introduce basic preliminaries and notations in Section 2,
including error-free transformations and Clenshaw algorithm. In Section 3, we present the
compensated Clenshaw algorithm and analyze the forward error of Clenshaw and Compensated
Clenshaw algorithm. In Section 4, we show the experimental results to indicate our algorithm is
efficient and accurate.

2. Preliminaries and Notations

2.1. Basic Definitions and Notation

Throughout the paper we assume a floating-point arithmetic adhering to IEEE 754 floating-point
standard [12] and no overflow nor underflow occurs. We also assume that ()fl ⋅ is the result of a
floating-point computation. Here, the computations are produced in a floating-point arithmetic
which obeys the models.

(op)(op) = (op)(1) = , | |,| | ,

1
x yfl x y x y uρ ρ α

α
+ ≤

+
 (3)

where op { , , , /}∈ + − × and u is the working precision. Besides, we note
2:= / (1) = ()n nu nu nu uγ − + and we use â to represent the computed element of a in floating-

point arithmetic. Finally, an elementary classical result of error analysis states that if then
 with .

2.2. Error-free Transformations

In this subsection we review well-known results called error-free transformations (EFTs) . Given
, , then exist such that .

We show algorithms 1-3 about addition and product of two floating-point numbers proposed
respectively by Knuth [13] and Dekker [14], respectively.

196

A compensated algorithm [15] for product of three floating-point numbers in Algorithm 4 is also

presented. There are three properties of ThreeProd which will be used in error analysis:
1. 2| | | | | | | | | |;e u abc u hc u abc u abc≤ + ≤ +
2. 2| | | | | | 2 | | | |;ch e ch e u abc u abc+ ≤ + ≤ +

3. If =x y abc τ+ − in ThreeProd algorithm, then
 2

2 6| | | |, | | 2 | | 14 | | .abc y u abc u abcτ γ γ≤ ≤ + (4)

2.3. Clenshaw Algorithm and Condition Number

The Clenshaw algorithm [5] of generalized Laguerre polynomial shows in Algorithm 5.

Reviewing [16], their works put forward a general condition number for polynomial basis

defined by linear recurrence. Before giving the condition number of Laguerre polynomial, we show

an absolute polynomial.

Definition 1. Let ()kL x be a Laguerre polynomial. The absolute polynomial () ()kL xα
 can be

defined as follow.

 () () ()
1 2

2 1() = () (),
1 1k k k

x k kL x L x L x
k k

α α αα α
− −

+ + + +
+

+ +
 (5)

where and , for all 0x ≥ .
Motivated by [10, 11, 15], we show the condition number of Laguerre polynomial series.
Definition 2. Let , the relative condition number is

()

=0
| | (| |)

()cond(,) = = ,
| () | | () |

n

k k
i

a L x
p xp x
p x p x

α∑

 (6)

where is Laguerre polynomial, is absolute polynomial.

197

3. Compensated Algorithm and Error Analysis

3.1. Clenshaw Algorithm and Condition Number

In this section, we analyze the round-off error of Clenshaw algorithm and present a compensated
Clenshaw algorithm to compute finite Laguerre series accurately. Furthermore, we exhibit its error
bound.

Previously, we divide all real coefficients into three parts as following form in order to analyze
errors.

 () () ()= ,h l mA A A A+ + (7)
Where () () () () () () (), , , ,h l m m l l hA A A A uA A uA∈ ∈ ≤ ≤ .

Actually, in floating-point arithmetic, round-off error is almost produced in each addition,
subtraction or multiplication in Clenshaw algorithm. We choose the recurrence relation at th step of
Clenshaw Algorithm for analysis, we have

 () () ()
1 1 2

ˆ = () .h h h
j j j j j j jb A x B b C b a+ + +⊗ ⊕ ⊗ ⊕ ⊗ ⊕ (8)

As for theoretical computation related with (8), we deduce that

1 1 2

() () () () () () () () ()
1 1 1 1 2

= ()

= [() ()] () .
j j j j j j j

h l m h l m h l m
j j j j j j j j j j j j

b A x B b C b a

A A A x B B B b C C C b a
+ + +

+ + + + +

+ + +

+ + + + + + + + + (9)
In Algorithm 4 we use EFTs and ThreeProd to eliminate every error and obtain that

() ()
1 1

()
1 2

ˆ ˆ[,] = ThreeProd(, ,), [,] = TwoProd(,),
ˆ[,] = TwoProd(,), [,] = TwoSum(,),

ˆ[,] = TwoSum(,), [,] = TwoSum(,).

h h
j j j j j j j j

h
j j j j j j

j j

j

j j j j

j

j j

s A x b t B b

u C b v s t

w v u b w a

α b

h

θ ζ

x

+ +

+ + (10)

Contrast with (9), the round-off error of method (8) is
 () () () () () ()

1 1 1 1 2
ˆ ˆ ˆ= () () () .l m l m l m

j j j j j j j j j j j j j j j j je A A xb B B b C C b τ α b x h θ ζ+ + + + ++ + + + + + + + + + + + (11)

Then we can obtain Theorem 1 as follow.
Theorem 1. Let , be the computed result by Clenshaw

algorithm in floating-point arithmetic, given , we can
get the error bound as

198

1

() ()
0

=0 =0

ˆ() = ().
n n

j j j j
j j

e L x b a L xα α
−

+∑ ∑ (12)

As we can see, in Theorem 1, the computed result 0̂b is an exact value with perturbation 1 ()
=0

()n
j jj

e L xα−∑ .

Assuming 1 ()
=0

= ()n
j jj

c e L xα−∑ and ()
0 =0

= ()n
j jj

b a L xα∑ , we obtain

 0 0
ˆ = .b c b+

Therefore, we record the round-off error in each step of Clenshaw algorithm by EFTs, and then
compute the perturbation to correct the numerical result 0b̂ . In fact, because c is also a Laguerre
series, we can apply Clenshaw algorithm again. We present compensated Clenshaw algorithm
(CompClenshaw) in Algorithm 6.

In order to analyze the error bound of the CompClenshaw algorithm, we show Lemma 1 as
follow.

Lemma 1. Let be a Laguerre series of degree n, x is a floating-point number,

 the numerical result of Clenshaw algorithm. Then

 ()
6 2

=0
| (,) () | | | (| |).

n

n j j
j

Clenshaw p x p x a L xαγ −− ≤ ∑ (13)

Lemma 2. Suppose be a Laguerre series of degree n and x is a floating-
point number, we assume that ,where a real
numbers. Then

1

() ()
6(1)

=0 =1
(| |) (1) | | (| |).

n n

j j j n j j
j j

L x n a L xα ασ ω γ
−

−≤ +∑ ∑ (14)

 Based on Lemma 2, we can obtain Lemma 3 as follow.

Lemma 3. Suppose ,

 and is the error of ThreeProd,

then we can obtain

 () () ()
6 1

=0 =0
| () | | | (| |),

n n
l

j j n j j
j j

g L x a L xα αγ +≤∑ ∑ (15)

 () () ()
6 1

=0 =0
| () | | | (| |),

n n
m

j j n j j
j j

g L x u a L xα αγ +≤∑ ∑ (16)

1

() ()
6 1

=0 =0
| () | | || (| |),

n n

j j n j j
j j

s L x a L xα αγ
−

−≤∑ ∑ (17)

1

() ()
6 6 4

=0 =0
| | | () | | | (| |).

n n

j j n j j
j j

L x a L xα ατ γ γ
−

−≤∑ ∑ (18)

As analyzing in Lemma 3, we discover some perturbation do not influence the numerical result

in working precision. Such as (16),(18), the bound are , so these errors do not

affect the precision. However, from (15),(17) we know that are , so the coefficient

perturbations may influence the accuracy, we need to consider it in our error analysis.

Theorem 2. Let be a Laguerre series of degree and x is a floating-

point number. Then the forward error bound of the CompClenshaw algorithm is

199

 2 ()
6

=0
| (,) () | | () | 2 | | (| |).

n

n j j
j

CompClenshaw p x p x u p x a L xαγ− ≤ + ∑ (19)

Proof. From [9, 15], we show two inequations to get the error bound.
Suppose
 = ,j j j j j j js α b x h θ ζ+ + + + +
then we have

 5ˆ (1)(| | | | | | | | | | | |).j j j j j j js γ α b x h θ ζ≤ + + + + + +
Considering that

1 1
() ()

=0 =0

1 1 1 1
() () () ()

=0 =0 =0 =0

1 1
() ()

6 7
=0 =0

1

6 2
=0

ˆ| () () |

ˆ ˆ ˆ| () () | | () () |

ˆ ˆ| | (| |) | | (| |)

(| | | |

n n

j j j j
j j

n n n n

j j j j j j j j
j j j j

n n

j j j n j j
j j

n

n j j
j

s L x s L x

s L x s L x s L x s L x

s s L x s L x

α α

α α α α

α αγ

γ α b

− −

− − − −

− −

−

−

−

−⊕ ⊗

≤ − + −⊕ ⊗

≤ − +

≤ + +

∑ ∑

∑ ∑ ∑ ∑

∑ ∑

∑

()

()
6 2 6 1

=0

2 ()
6 1

=0

| | | | | | | |) (| |)

| | (| |) [By inequation (17)]

| | (| |)

j j j j j

n

n n j j
j

n

n j j
j

L x

a L x

a L x

α

α

α

x h θ ζ

γ γ

γ

− −

−

+ + +

≤

≤

∑

∑

and

1 1
() () () ()

=0 =0

1 1 1 1
() () () () () () () ()

=0 =0 =0 =0

1 1
() () () () ()

6 7
=0 =0

ˆ| () () |

ˆ ˆ ˆ| () () | | () () |

ˆ ˆ| | (| |) | | (

n n
l l

j j j j
j j

n n n n
l l l l

j j j j j j j j
j j j j

n n
l l l

j j j n j j
j j

g L x g L x

g L x g L x g L x g L x

g g L x g L

α α

α α α α

α αγ

− −

− − − −

− −

−

−⊕ ⊗

≤ − + −⊕ ⊗

≤ − +

∑ ∑

∑ ∑ ∑ ∑

∑ ∑

1
() () ()

6 2 1 1 1 2
=0

| |)

ˆ ˆ ˆ(| | | | | |),
n

l l l
n j j j j j j

j

x

A xb B b C bγ
−

− + + + +≤ + +∑

combining with

 () () ()
1 1 1 2 1 1 1 1 2

ˆ ˆ ˆ ˆ ˆ ˆ| | | | | | (1) | | | | | |,l l l
j j j j j j j j j j j jA xb B b C b u A xb B b C bγ+ + + + + + + ++ + ≤ + + +

we have

200

1 1
() () () ()

=0 =0

()
6 2 1 6(1)

=0

()
6 2 6

=0

2 ()
6 1

=0

ˆ| () () |

(1) (1) | | (| |)

| | (| |)

| | (| |).

n n
l l

j j j j
j j

n

n n j j
j

n

n n j j
j

n

n j j
j

g L x g L x

u n a L x

a L x

a L x

α α

α

α

α

γ γ γ

γ γ

γ

− −

− −

−

−

−⊕ ⊗

≤ + +

≤

≤

∑ ∑

∑

∑

∑

 Then we obtain the error bound

0 0

0 0

0 0

ˆ ˆ| (,) () |=| (1)() () |
ˆ=| (1)(()) () | [By Theroem 3.1]

ˆ| () | (1) | | .

CompClenshaw p x p x b b p x

p x b b p x

u p x u b b

e e

e e e

e e

− + + −

+ − + −

≤ + + −
Next we consider that

1 1 1 1
() () () () () () ()

0 0
=0 =0 =0 =0

1 1 1 1
() () () () () ()

=0 =0 =0 =0

1
2
6 1

=0

ˆ ˆ ˆ| |=| () () () () |

ˆ| () | | () () |

2

n n n n
l l

j j j j j j j j j
j j j j

n n n n
l l

j j j j j j j j
j j j j

n

n
j

b b s L x g L L x s L x g L x

s L x s L g L x g L x

α α α α α

α α α α

e e

γ

− − − −

− − − −

−

−

− + −⊕ ⊗ −⊕ ⊗

≤ −⊕ ⊗ + −⊕ ⊗

≤

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑

∑ ()| | (| |).j ja L xα

Finally, we obtain

2 ()
6 1

=0

2 ()
6

=0

| (,) () | | () | 2(1) | | (| |)

| () | 2 | | (| |).

n

n j j
j

n

n j j
j

CompClenshaw p x p x u p x u a L x

u p x a L x

α

α

γ

γ

−− ≤ + +

≤ +

∑

∑

Combining Definition 2 and Theorem 2, we present corollary 3.1 as follow. Given
 a Laguerre series of degree with floating-point coefficients, and x is a floating-

point number. Then the error bound of CompClenshaw algorithm is

 2
6

| (,) () | 2 (,).
| () | n

CompClenshaw p x p x u cond p x
p x

γ−
≤ + (20)

As the Corollary 3.1 show, the relative error bound produced by CompClenshaw algorithm is
2
6nγ times the condition number of the polynomial and plus an unavoidable summand u . That is to

say, if 2
6(,) 0.5 ()ncond p x O uγ −≤ × , the computed result of CompClenshaw algorithm is accurate.

When 2
6(,) 0.5 ()ncond p x O uγ −≥ × , its accuracy will be the same as computed in original Clenshaw

algorithm with normal condition numbers.

4. Experimental Results

4.1. Evaluation of the Polynomial in Laguerre basis

All our experiments are performed using IEEE-754 double precision. The polynomials in
Laguerre basis we consider are floating-point coefficients, and x is a floating point. We use the
Symbolic Toolbox in Matlab to obtain exact results for comparisons.

201

In our experiment, we consider polynomial 7 10() = (0.52) (1)p x x x− − , an ill-conditional
polynomial in neighborhood of its multiple roots 0.52 and 1. The Clenshaw and CompClenshaw
Algorithm are used to evaluate the Laguerre polynomial basis with parameter = 0α . For
perturbations of Laguerre polynomial, we need to convert the polynomial coefficients to Laguerre
basis [17]. We use a Convert algorithm [15] to obtain the coefficients of Laguerre polynomial.

Firstly, we check the polynomial with argument = 0α for 400 isometric points in [0.68,1.15],
[0.7485,0.7515],and [0.993,1.007] . We show the absolute error (13) and (19) in Figure 1. From
Figure 1, we detect that the CompClenshaw algorithm is more accurate than Clenshaw.

As we known, the closer to the root, the larger the condition number [10]. We test 120 points of
polynomial 7 10() = (0.52) (1)p x x x− − near the root = 0.52x , i.e. 2 85= 0.52 1.03 ix −− where = 1: 80i and

5 85= 1 1.03 ix −− where = 1: 40i . We compare the forward relative error | () () | / ()
res sym sym

p x p x p x− of
Clenshaw, CompClenshaw and DDClenshaw algorithm in Figure 2, respectively. As we can see, in
Figure 2, the relative error of CompClenshaw and DDClenshaw algorithm are almost same.
Moreover, when condition number is less than working precision 16 (= 1.16 10)u u −× , the result of

202

CompClenshaw is nearly equal to u . When condition number is larger than u , the forward error
increase linearly.
Meanwhile, we also consider the computational complexity of Clenshaw, CompClenshaw, and
DDClenshaw algorithms, based on the computation cost of TwoSum, TwoProd, and FastTwoSum.
The complexity of them is 7 2 flops, 105 9 flops, 154 44 flopsn n n− − − . So we can observe that
CompClenshaw is as accurate as DDClenshaw in double precision, but it only needs about 68.18%
of flops.

5. Conclusion

This paper introduce a CompClenshaw algorithm to evaluate the Laguerre polynomial. The
Clenshaw algorithm is not accurate enough when the problem is ill-conditioned, particularly the
floating-point is near the multiple root of polynomial. The CompClenshaw algorithm can delay the
appearance of instability problems in standard precision and obtain a full precision result, which as
same as computed in double-double precision. Besides, the CompClenshaw algorithm is more
efficient to evaluate Laguerre polynomial.

Acknowledgements

Partially supported by National Natural Science Foundation of China (No. 61571008). Partially
supported by National Natural Science Foundation of China (No. 61402495, No. 61602166, No.
61303189, No. 61402496). Partially supported by Science Project of National University of
Defense Technology (JC120201) and National Natural Science Foundation of Hunan Province in
China (13JJ2001).

References

[1] C. Hwang and Y. P. Shih. Parameter identification via laguerre polynomials. International Journal of
Systems Science, 13(2):209–217, 1982.
[2] M. Gülsu, B. Gürbüz, Y. Öztürk, and M. Sezer. Laguerre polynomial approach for solving linear delay difference
equations. Applied Mathematics and Computation, 217(15):6765–6776, 2011.
[3] R. Piessens. Numerical inversion of the laplace transform using generalised laguerre polynomials. Proceedings of
the Institution of Electrical Engineers, 118(10):1517–1522, 1971. New York, 19852:309, 1985.
[4] M. W. Coffey. Generalized raising and lowering operators for supersymmetric quantum mechanics. Physics, 2015.
[5] C. W. Clenshaw. A note on the summation of chebyshev series. Mathematics of Computation, 9(51):118–120,
1955.
[6] A. Smoktunowicz. Backward stability of clenshaw’s algorithm. BIT Numerical Mathematics, 42(3):600–610,
2002.
[7] R. Barrio. Rounding error bounds for the clenshaw and forsythe algorithms for the evaluation of orthogonal
polynomial series. Journal of computational and applied mathematics, 138(2):185–204, 2002.
[8] H. Jiang, R. Barrio, H. Li, X. Liao, L. Cheng, and F. Su. Accurate evaluation of a polynomial in chebyshev form.
Applied Mathematics and Computation, 217(23):9702–9716, 2011.
[9] H. Jiang, S. Graillat, C. Hu, S. Li, X. Liao, L. Cheng, and F. Su. Accurate evaluation of the k-th derivative of a
polynomial and its application. Journal of Computational and Applied Mathematics, 243:28–47, 2013.
[10] P. Langlois, S. Graillat, and N. Louvet. Compensated horner scheme. 2005.
[11] T. Ogita, S. M. Rump, and S. Oishi. Accurate sum and dot product. SIAM Journal on Scientific Computing,
26(6):1955–1988, 2005.
[12] IEEE. IEEE standard for binary floating-point arithmetic. 1985.
[13] D. E. Knuth. The art of computer programming. Addison-Wesley Pub. Co., 1973. [13] D. E. Knuth. The art of
computer programming. Addison-Wesley Pub. Co., 1973.
[14] T. J. Dekker. A floating-point technique for extending the available precision. Numerische Mathematik,
18(3):224–242, 1970.
[15] P. Du, H. Jiang, and L. Cheng. Accurate evaluation of polynomials in legendre basis. Journal of Applied
Mathematics, 2014(1):1–13, 2014.

203

[16] R. Barrio H. Jiang and S. Serrano. A general condition number for polynomials. SIAM Journal on Numerical
Analysis, 51(2):1280–1294, 2013.
[17] R. Barrio and J. M. Peña. Basis conversions among univariate polynomial representations. Comptes Rendus
Mathematique, 339(4):293–298, 2004.
[18] S. R. Graillat. Accurate floating-point product and exponentiation. IEEE Transactions on Computers,
58(7):994–1000, 2009.

[19] D. H. Bailey High-precision software directory: QD library, double-double library. Lawrence Berkeley
National Laboratory, http://www. nersc. gov/ dhbailey/ mpdist/ mpdist. html. , 2008.

Appendix

Appendix A: The Extra Proof

Proof of Theorem 1. Inspired by [15], we set

() () () () () ()

1 1 1 1 2

= ,
ˆ ˆ ˆ= () () () .

j j j j j j j j

l m l m l m
j j j j j j j j j j

s

t A A xb B B b C C b

τ α b x h θ ζ

+ + + + +

+ + + + + +

+ + + + +

Then

 () () ()
1 1 2

1 1 1 2

ˆ ˆ= ()
ˆ ˆ= ()

ˆ ˆ ˆ= , = 1,..., ,

j j j j j

h h h
j j j j j j j

j j j j j j j

b e b s t

A x B b C b a t

A xb B b C b a j n
+ + +

+ + + +

+ + +

+ + + +

+ + +

 (21)

and 0 0 1 1 2 0
ˆ ˆ ˆ ˆ=b e xb b b aα α+ − + + + .

Thus

 ()
0

=0

ˆ = () (),
n

j j j
j

b a e L xα−∑ (22)

with = = = = = = 0n n n n n nα b x h θ ζ , then we can obtain the result.
Proof of Lemma 1. Based on equation (3), we obtain

() () ()
1 1 1

1 1 1

() () () ()
2 2 2 1 1 2

2 1 2 1 1 2

ˆ ˆ ˆ ˆ=
ˆ ˆ= < 5 > < 4 > < 1 >

ˆ ˆ ˆ= []
ˆ ˆ ˆ= < 6 > < 5 > < 4 > < 1 >

h h h
n n n n n j

n n n n n

h h h h
n n n n n n n

n n n n n n n

b A x b B b a

A xb B b a

b A x B b C b a

A xb B b C b a

− − −

− − −

− − − − − −

− − − − − −

⊗ ⊗ ⊕ ⊗ ⊕

+ +

⊗ ⊕ ⊗ ⊕ ⊗ ⊕

+ + +

 (23)

Using mathmematical induction, we can obtain 0̂b as follow

1

0 0
=0

1

0
=0

ˆ =< 10 6(2) > () < 1 >

=< 6 2 > () < 1 > .

n
n

j n
j

n
n

j n
j

b n A x a a

n A x a a

−

−

+ − + +

− + +

∏

∏

 (24)

Combing (24) the forward error is

204

1

0 6 2 0 1
=0

1

6 2 0
=0

()
6 2

=0

ˆ| () |=| () |

| () || || | | |

= | | (| |).

n
n

n j n
j

n
n

n j n
j

n

n j j
j

b p x A x a a

A x a a

a L xα

θ θ

γ

γ

−

−

−

−

−

− + +

≤ + +

∏

∏

∑

 (25)

Proof of Lemma 2. According to (23), we have
 6 1 1 1 2

ˆ ˆ ˆ ˆ| | (1)(| || || | | || | | || | | |).j j j j j j j jb A x b B b C b aγ + + + +≤ + + + + (26)

Combining (26) with 1 1 1 2
ˆ ˆ ˆ(| || | | || | | || | | |)j j j j j j j j jA x b B b C b aσ ω + + + +≤ + + + , we get

 ()
6(1)

=
(1) | | (| |),

n

j j n j k k j
k j

a L xασ ω γ − − −≤ + ∑ (27)

then

1 1

() () ()
6(1)

=0 =0 =
(| |) (1) | | (| |) (| |).

n n n

j j j n k k j j
j j k j

L x a L x L xα α ασ ω γ
− −

− −

≤ + ×

∑ ∑ ∑ (28)

Then we can obtain

1 1 1

() () ()
6(1) 6(1)

=0 =0 = =0
(| |) (1) | | (| |) (1 | | (| |)).

n n n n

j j j n k k j n j j
j j k j j

L x a L x n a L xα α ασ ω γ ω γ
− − −

− −≤ + ≤ +∑ ∑∑ ∑ (29)

Proof of Lemma 3. According to
() ()l hA uA≤ and () = < 1 >hA A ,we obtain

()
1 1 1 1 2

ˆ ˆ ˆ| | (1)(| || || | | || | | || |).l
j j j j j j jg u A x b B b C bγ + + + +≤ + + +

Then combing Lemma 2

() () ()
6 1

=0 =0

()
6 1

=0

()
6 1

=0

| () | (1) (1) | | (| |)

(6 1) (1) | | (| |)

| | (| |).

n n
l

j j n j j
j j

n

n j j
j

n

n j j
j

g L x n u a L x

n u a L x

a L x

α α

α

α

γ

γ

γ

+

+

+

≤ + +

≤ + +

≤

∑ ∑

∑

∑

Similarly, we have
() 2

1 1 1 1 2
ˆ ˆ ˆ| | (1)(| || || | || || | | || |).m

j j j j j j jg u A x b B x b C bγ + + + +≤ + + +
Then

() () ()
6 1

=0 =0
| () | | | (| |)

n n
m

j j n j j
j j

g L x u a L xα αγ +≤∑ ∑

Based on equation (4), we obtain

205

2
1 1

()
1 1 1

()
1 2 1 1 2

1 1

1 1 1 2

ˆ| | (2 14)(1) | |,
ˆ ˆ| | | | (1) | |,
ˆ ˆ| | | | (1) | |,

ˆ ˆ| | | | | < 3 > < 2 >|,
ˆ ˆ ˆ| | | < 4 > < 3 > < 2 >|,

| | |

j j j

h
j j j j j

h
j j j j j

j j j j j j j

j j j j j j j

j j

u u A xb

u B b u B b

u C b u C b

u s t u A xb B b

u A xb B b C b

u A

α γ

b γ

x γ

h

θ

ζ

+

+ +

+ + + +

+ +

+ + + +

≤ + +

≤ ≤ +

≤ ≤ +

≤ + ≤ +

≤ + +

≤ 1 1 1 2
ˆ ˆ ˆ< 5 > < 4 > < 3 > < 1 >|,j j j j j jxb B b C b a+ + + ++ + +

Then
 2

5 1 1 1 2
ˆ ˆ ˆ(5 14) |1 | (| || | | | | | |).j j j j j j j js u u A x b B b C b aγ + + + +≤ + + × + + + (30)

Let 2
5= (5 14) |1 |j u uω γ+ + , from Lemma 2 we have

()
1

()

=0

()
6 1

=0

()
6 1

=0

| | | | | | | | | | | | | () |

(5 14) (1) | || (| |)

| || (| |), (> 1).

n

j j j j j j j
j

n

n j j
j

n

n j j
j

L x

u nu a L x

a L x n

α

α

α

α b x h θ ζ

γ

γ

−

−

−

+ + + + +

≤ + +

≤

∑

∑

∑

Similarly, combing with ()
2 6 1 2 6 1 1

ˆ ˆ| | | | (1) | |h
j j j j jA xb A xbτ γ γ γ γ γ+ +≤ ≤ + , we have

1
() ()

2 6 1 6(1)
=0 =0

()
6 6 4

=0

| | || () | (1)(1) | || (| |)

| || (| |).

n n

j j n j j
j j

n

n j j
j

L x n a L x

a L x

α α

α

τ γ γ γ γ

γ γ

−

−

−

≤ + +

≤

∑ ∑

∑

Appendix B: The double-double Algorithm [19]

Algorithm 7 Addition of double-double number and a double number
 [,] = _ _ (, ,)rh rl add dd d ah al b
[,] = (,)th tl TwoSum ah b

=tl al tl⊕
[,] = (,)rh rl FastTwoSum th tl
Algorithm 8 Multiplication of a double-double number by a double number
[,] = _ _ (, ,)rh rl prod dd d ah al b
 [,] = (,)th tl TwoProd ah b

=tl al b tl⊗ ⊕
[,] = (,)rh rl FastTwoSum th tl
Algorithm 9 Multiplication of a double-double number by a double-double number
[,] = _ _ (, , ,)rh rl prod dd dd ah al bh bl
[,] = (,)th tl TwoProd ah bh

= () ()tl ah bl al bh tl⊗ ⊕ ⊗ ⊕
[,] = (,)rh rl FastTwoSum th tl

206

Algorithm 10 Addition of a double-double number and a double-double number
[,] = _ _ (, , ,)rh rl add dd dd ah al bh bl
[,] = (,)sh sl TwoSum ah bh
[,] = (,)th tl TwoSum al bl

=sl sl th⊕
=th sh sl⊕
= ()sl sl th sh
=tl tl sl⊕

[,] = (,)rh rl FastTwoSum th tl
Algorithm 11 DDCleshaw algorithm of evaluating Laguerre series in double-double arthmetic
 function = (,)res DDClenshaw p x

 2 1= = 0n nb b+ +

 for = : 1: 0j n −

 () ()
1 1[1, 1] = _ _ (, ,)h h

j jrh rl prod dd d b b x+ +

 () ()[2, 2] = _ _ (1, 1, ,))h l
j jrh rl prod dd dd rh rl A A

 () () () ()
1 1[3, 3] = _ _ (, , ,)h l h l

j j j jrh rl prod dd dd b b B B+ +

 () () () ()
2 2 1 1[4, 4] = _ _ (, , ,)h l h l

j j j jrh rl prod dd dd b b C C+ + + +

 [5, 5] = _ _ (2, 2, 3, 3)rh rl add dd dd rh rl rh rl
 [6, 6] = _ _ (5, 5, 4, 4)rh rl add dd dd rh rl rh rl− −

 () ()[,] = _ _ (6, 6,)h l
j j jb b add dd d rh rl a

end for
 () ()

0 0= [,]h lres b b

207

	1. Introduction
	2. Preliminaries and Notations
	2.1. Basic Definitions and Notation
	2.2. Error-free Transformations
	2.3. Clenshaw Algorithm and Condition Number
	3. Compensated Algorithm and Error Analysis
	3.1. Clenshaw Algorithm and Condition Number
	4. Experimental Results
	4.1. Evaluation of the Polynomial in Laguerre basis
	5. Conclusion
	Acknowledgements
	References
	Appendix
	Appendix A: The Extra Proof
	Appendix B: The double-double Algorithm [19]

